matematik matematik matematik
 
matematik etkinlikleri
matematik okulu  
  matematik dünyası
  İletişim
  6. sınıf sbs matematik konu anlatımları
  7. sınıf sbs matematik konu anlatımları
  8. sınıf sbs matematik konu anlatımları
  sınav soruları
  sbs rehberlik
  matematik resimleri
  matematik haber
  matematik üzerine yazılar
  => MATEMATİK NEDİR?
  => bir öğrenci gözüyle matematik
  => MATEMATİK KORKUSUNDA ÖĞRETMEN ROLÜ
  => Matematik Eğitimi ve Öğretimi Nasıl Olmalıdır?
  => Dyscalculia Nedir?
  => Matematik Eğitiminde Yenilik?
  => MATEMATİK FORMÜLLERİ
  => Matematik Oyunları
  => Okul Öncesi Dönem ve Matematik Eğitimi
  => Dünden Bugüne Matematik ve Ömer Hayyam
  => iLGiNÇ BİR ZEKA TESTİ
  => bunları biliyormuydunuz?
  => Bir Matematikçinin Savunması
  => MATEMATİK KÜLTÜRÜ
  => Geometrinin Gizemli Tarihi
  => Matematik ve Şiir
  => Matematik Dersi nasıl çalışılır?
  => Çöl Karıncası ve Matematik
  => Matematikçi At
  => Matematik Hayat Kurtarıyor
  => Matematik Kültürü Üzerine
  matematik fıkraları
  matematik şiirleri
  matematik karikatürleri
  Matematikle ilgili Filmler
  Matematik Dökümanları
  dost matematik siteleri
  matematik anket

Zirve100 Site ekle

Link Değişimi
matematik resimleri etkinmatematiksbsmatematikGENÇLİK MERKEZİ
MATEMATİK FORMÜLLERİ
ÜSLÜ SAYILAR
x . an + y . an – z . an = (x + y – z) . an 
am . an = am + n
am . bm = (a . b)m
am : an = am - n


KARE'NİN ALANI:
A=a.a
(a karenin bir kenarı)

DİKDÖRTGEN'İN ALANI:
A = a.b
(a kısa kenarı, b uzun kenarı)

YAMUK'UN ALANI:
A = (a+c).h / 2
(a alt taban uzunluğu, c üst taban uzunluğu, h yükseklik)

PARALELKENAR'IN ALANI:
A = a.h
(a taban kenarı, h tabana inen
yükseklik)

 
SİLİNDİR'İN HACMİ:
H = taban alan.yükseklik
H = π.r.r.h
(π=3,14 alırız, r taban yarıçapı, h yükseklik)
(konserve tenekesi) 

KÜP'ÜN HACMİ:
H = a.a.a
(a küpün bir kenarının uzunluğu)
(küp şeker)

DİKDÖRTGENLER PRİZMASI'NIN HACMİ:
H = a.b.c
(a en, b boy, c
yüksekliği)
(kibrit kutusu)

KARE PRİZMA'NIN HACMİ:
H = taban alan.
yüksekliği H = a.a.b
(a kare olan tabanın bir kenarı, b yükseklik)

DİK PRİZMALARIN HACMİ:
V= (taban alanı) X (yükseklik)
 
ÇEMBER'İN VE DAİRE'NİN ÇEVRESİ:
Ç = 2.π.r
(π=3,14 alırız r daire veya çemberin yarıçapı)

DAİRE'NİN ALANI:
A = π.r.r
(π=3,14 alırız r dairenin yarıçapı)

DAİRE DİLİMİNİN ALANI:
A = π.r.r.x / 360º
(π=3,14 alırız r dairenin yarıçapı, x açısı daire diliminin arasında kalan merkez açı)

ÇEMBER YAYININ UZUNLUĞU:
Ç = 2.π.r.x / 360º
(π=3,14 alırız r çemberin yarıçapı, x açısı çember parçasının arasında kalan merkez açı)

ÜÇGENİN ALANI VE ÇEVRESİ
Üçgenin çevresini bulabilmek için
kenarlar toplanır.                       
Ç = a + b + c
Üçgenin alanını bulmak için yükseklikle
kenar çarpılır ve ikiye bölünür.

                           
         h x a      
A=  ----------
           2                  

ÇOKGENDE iç açılar toplamı:
Dış bükey bir çokgenin n tane kenarı var ise iç açılarının toplamı
 
(n - 2) . 180°
 
Dış açılar toplamı: Bütün dışbükey çokgenlerde
 
Dış açılar toplamı =360°
 
Köşegenlerin sayısı: n kenarlı dışbükey bir çokgenin
 
n.(n-3) / 2
Bir köşeden (n – 3) tane köşegen çizilebilir.
n kenarlı dışbükey bir çokgenin içerisinde, bir köşeden köşegenler çizilerek
(n – 2) adet üçgen elde edilebilir.
 n kenarlı düzgün bir çokgende bir iç açının ölçüsü
(n - 2) . 180°/ n
Konveks çokgenlerin dış açıları toplamı 360° olduğundan düzgün çokgenin bir dış açısının ölçüsü
360° / n
 
DOĞRUNUN EĞİMİ
Eğim karşının komşuya bölümüdür.
Eğim=tanx


Eğim=b/c

Kar-Zarar Problemleri
Maliyet:100  %20 kar   Satış:100+20=120
Maliyet:100 %20 İndirimli Satış:
100-20=80
İndirimli satışın üzerinden %20 karlı satış:
80.%120=(80.120):100=96

YÜZDE PROBLEMLERİ
Yüzde, paydası 100 olan kesirlere denir.
Örneğin, yüzde 50 (%50)= 50/100 = 1/2
 
Yüzde 20 (%20) = 20/100 = 1/5

FAİZ PROBLEMLERİ
f = a.n.t / 100 (yıllık faiz)
f = a.n.t / 1200 (aylık faiz)
f = a.n.t / 36000 (günlük faiz)
(a anapara, n faiz yüzdesi, t zaman, f faiz)
SAAT PROBLEMLERİ
|30.saat(akrep)-5,5.dakika(yelkovan|
=kollar arasındaki açı
 
HAREKET PROBLEMLERİ
   Yol: x                 
   Hız: v
   Zaman: t
Yol= Hız . Zaman  x=v.t             
 Hız = Yol / Zaman   v=x/t
Zaman= Yol / Hız    t=x/v
Hareketliler aynı anda ve zıt yönde ise x = (v1 + v2). t
Hareketliler aynı anda ve aynı yönde 
ise x = (v1 - v2). t
Nehir problemlerinde ise her zaman kayığın hızından akıntının hızı çıkartılır.

YAŞ PROBLEMLERİ
Bir kişinin yaşı a olsun,
T yıl önceki yaşı : x-T
T yıl sonraki yaşı : x + T olur.
İki kişinin yaşları oranı yıllara
göre orantılı değildir.
n kişinin yaşları toplamı b ise
T yıl sonra b + n.T 
T yıl önce b - n.T
Kişiler arasındaki yaş farkı
her zaman aynıdır.
x yıl öncede yaş farkı a-b
x yıl sonrada yaş farkı a-b
Katlar ve oranlar hangi yılda verildiyse
denklem o yılda kurulur.
 
 İŞÇİ - HAVUZ PROBLEMLERİ
Bir işi;
A işçisi tek başına a saatte,
B işçisi tek başına b saatte,
C işçisi tek başına c saatte
yapabiliyorsa;
İş t saatte bitiyorsa
1/a + 1/b + 1/c = 1/t olur.
 A işçisi 1 saatte işin 1/a sını bitirir.
  A ile B birlikte t saatte işin
(1/a + 1/b).t sini bitirir.
A işçisi x saatte, B işçisi y saatte 
C işçisi z saatte
çalışarak işin tamamını bitirdiklerine göre üçü birlikte işi    k saatte bitiriyorsa,
k/x + k/y + k/z = 1 olur.
Havuz problemleri işçi problemleri
gibi çözülür.
A musluğu havuzun tamamını a saatte
doldurabiliyor.
Tabanda bulunan B musluğu dolu havuzun
tamamını tek başına b saatte boşaltabiliyor
olsun.
Bu iki musluk birlikte bu havuzun t saatte
   (1/a - 1/b).t sini doldurur.
Bu havuzun dolması için b > a olmalıdır.
Eğer havuz t saatte doluyorsa
 1/a - 1/b = 1/t
Havuz dolduruluyorsa dolduran musluk (+), boşaltan musluk (-) alınır.
Havuz boşaltılıyorsa dolduran musluk (-), boşaltan musluk (+) alınır.
 
TRİGONOMETRİ



SinC = karşı / hipotenüs
SinC = c / a
CosC = komşu / hipotenüs
CosC = b / a
TanC = karşı / komşu
TanC = c / b
CotC = komşu / karşı
CotC = b / c

tanx = sinx / cosx
cotx = cosx / sinx
tanx . cotx = 1
sinx.sinx + cosx.cosx = 1
 
ÖZDEŞLİKLER
İki Kare Farkı - Toplamı
 I) a2 – b2 = (a – b) (a + b)
II) a2 + b2 = (a + b)2 – 2ab  ya da
    a2 + b2 = (a – b)2 + 2ab  dir.
 
İki Küp Farkı - Toplamı
   I) a3 – b3 = (a – b) (a2 + ab + b2 )
  II) a3 + b3 = (a + b) (a2 – ab + b2 )
 III) a3 – b3 = (a – b)3 + 3ab (a – b)
IV) a3 + b3 = (a + b)3 – 3ab (a + b)
 Tam Kare İfadeler
I) (a + b)2 = a2 + 2ab + b2
(a + b)2 = (a – b)2 + 4ab
II) (a – b)2 = a2 – 2ab + b2
(a – b)2 = (a + b)2 – 4ab
III) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
IV) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)


 
 
 
 
(a + b)3 = a3 + 3a2b + 3ab2 + b3
 
 (a – b)3 = a3 – 3a2b + 3ab2 – b3
 (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
 
PİSAGOR BAĞINTISI


a2=b2+c2
a.a=b.b+c.c
 
OLASILIK
P(A)=S(A) / S(E)
Bir olayın olasılığı=istenilen durumların sayısı / tüm durumların sayısı
p(A)=0 ise imkansız olay=gerçekleşmesi mümkün değil
P(A)=1 ise kesin olay=gerçekleşmesi kesin
Herhangi bir olayın olmama olasılığı:
P'(A) = 1 - P(A)

Bağımsız olay:
Birbirlerini etkilemiyorlarsa(para-zar)
P(A Ç B)= P(A) . P(B)

Ayrık iki olayın birleşiminin olasılığı:
P(AUB)= P(A) + P(B)

Ayrık olmayan iki olayın birleşiminin olasılığı: 
P(AUB)= P(A) + P(B) - P(A ÇB)
 
n elemanlı bir kümenin r elemanlı permütasyonu:
P(n,r)=n! / (n-r)!
P(n,n)= n!    p(0,0)= 1
P(n,0)= 1    P(n,1)= n
Dairesel Permütasyon: (n-2)!
 
KOMBİNASYON
n elemanlı kümenin r ' li kombinasyonları sayısının formülü,

C(n,r)={n choose r} = {n choose {n-r}} = frac{P(n,r)}{r!} = frac{n!}{r!(n - r)!}  

FAKTÖRİYEL
n!=1.2.3.4.5.........n
6!=1.2.3.4.5.6=720
 
ORANTI
1) a/b=c/d ise a.d= b.c
2) a : b : c = x : y : z ise,
Burada, a = x . k
            b = y . k
            c = z . k dır.
renkli matematik  
 

SBS nin kaldırılması hakkında ne düşünüyorsunuz?
Süper oldu. 47.65%
İyi oldu. 4.12%
Hiç iyi olmadı. 38.82%
Hiçbir fikrim yok. 9.41%
170 toplam oy:


 
Reklam  
   
Haftanın Sorusu  
  Bir trenin üç vagonunda toplam 90 yolcu vardı.Eğer birinci vagondan ikinci vagona 12 yolcu geçip, ikinci vagondan üçüncü vagona 9 yolcu geçerse vagonlardaki yolcuların sayıları eşit oluyor.Başlangıçta her bir vagonda kaç yolcu vardı?

 
Bir Matematikçi Diyor ki;  
  “Dünyadaki en mâsum uğraş matematiktir”
G. H. HARDY
 
matematik sitesi  
   
=> Sen de ücretsiz bir internet sitesi kurmak ister misin? O zaman burayı tıkla! <=
matematik matematik matematik